2. Numbers and Sequences

Introduction for Exercise 2.1

Concept corner

Theorem 1 - Euclid's division Lemma : Let *a* and *b* (a > b) be any two positive integers. Then, there exist unique integers *q* and *r* such that $a = bq + r, 0 \le r < b$.

Note:

- > The remainder is always less than the divisor.
- > If r = 0 then a = bq so b divides a.
- > Conversly, if *b* divides *a* then a = bq

Generalised form of Euclid's division lemma:

If *a* and *b* are any two integers then there exist unique integers *q* and *r* such that a = bq + r, where $0 \le r < |b|$

Theorem 2: If *a* and *b* are positive integers such that a = bq + r, then every common divisor of *a* and *b* is *a* common divisor of *b* and *r* and vice – versa.

Euclid's Division Algorithm :

To find Highest Common Factor of two positive integers a and b where a > b.

- **Step-1:** Using Euclid's division lemma a = bq + r; $0 \le r < b$ where q is the quotient, r is the remainder if r = 0 then b is the Highest Common Factor of a and b.
- **Step-2:** Otherwise applying Euclid's division lemma divide *b* by *r* to get $b = rq_1 + r_1$,

 $0 \le r_1 < r.$

Step-3: If $r_1 = 0$ then *r* is the highest common factor of *a* and *b*.

Step-4: Otherwise using Euclid's division lemma repeat the process until we get the remainder zero. In that case, the corresponding divisor is the HCF of *a* and *b*.

Note:

- The above algorithm will always produce remainder zero at some stage. Hence the algorithm should terminate.
- > Euclids division algorithm is a repeated application of division lemma until we get zero remainder.
- > Highest Common Factor (HCF) of two positive numbers is denoted by (a, b)
- Highest Common Factor (HCF) is called as Greatest Common Divisor (GCD)

Theorem 3: If *a*, *b* are two positive integers with a > b then GCD of (a, b) =GCD of (a - b, b).

Highest common factor of three numbers : Let *a*, *b*, *c* be the given positive integers

- (i) Find HCF of a, b call it as d, d = (a, b)
- (ii) Find HCF of *d* and *c*.

This will be the HCF of the three given numbers *a*, *b*, *c*.

Note: Two positive integers are said to be relatively prime or co prime if their highest common factor is 1

Introduction for Exercise 2.2

Concept corner

Fundamental Theorem of Arithmetic:

Every natural number except 1 can be factorized as a product of primes and this factorization is unique except for the order in which the prime factors are written.

In general, we conclude that given a composite number N, we decompose it uniquely in the form $N = p_1^{q_1} \times p_2^{q_2} \times p_3^{q_3} \times ... \times p_n^{q_n}$ Where $p_1, p_2, p_3, ..., p_n$ are primes and $q_1, q_2, q_3 ... q_n$ are natural numbers.

Significance of the Fundamental Theorem of Arithmetic:

- If a prime number p divides ab then either p divides a or p divides b. That is p divides at least one of them.
- ➤ If a composite number n divides ab, then n neither divide a nor b.

For example, 6 divides 4×3 but 6 neither divide 4 nor 3.

Introduction for Exercise 2.3

Concept corner

Modular Arithmetic: Modular Arithmetic is a system of arithmetic for integers where numbers wrap around a certain value.

Congruence Modulo: Two integers *a* and *b* are congruence modulo *n* if they differ by an integer multiple of *n*. That b - a = kn for some integer *k*. This can also be written as $a \equiv b \pmod{n}$ Here, the number *n* is called modulus. In other words,

 $a \equiv b \pmod{n}$ means a - b is divisible by n. [dividend = remainder (mod divisor)] **Example:** $61 \equiv 5 \pmod{7}$ because 61 - 5 = 56 is divisible by 7.

Note:

- When a positive integer is divided by *n*, then the possible remainder are 0,1,2,3, ... n 1
- ➤ Thus, when we work with modulo *n*, we replace all the numbers by their remainders upon division by *n*, given by 0,1,2,3, ..., *n* − 1.

Connecting Euclid's Division lemma and Modular Arithmetic.

Let *m* and *n* be integers, where *m* is positive. Then by Euclid's division lemma, we can write n = mq + r were $0 \le r < m$ and *q* is an integer,

n = mq + r n - r = mq $n - r \equiv 0 \pmod{m}$ $n \equiv r \pmod{m}$

www.waytosuccess.org

50

Thus the equation n = mq + r through Euclid's Division lemma can also be written as $n \equiv r \pmod{m}$.

Note: Two integers *a* and *b* are congruent modulo *m*, written as $a \equiv b \pmod{m}$, if they leave the same remainder when divided by *m*.

Modulo operations:

Theorem 5: *a*, *b*, *c* and *d* are integers and *m* is a positive integer such that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then (i) $(a + c) \equiv (b + d) \pmod{m}$

(ii) $(a - c) \equiv (b - d) \pmod{m}$ (iii) $(a \times c) \equiv (b \times d) \pmod{m}$

Theorem 6 : If $a \equiv b \pmod{m}$ then (i) $ac \equiv bc \pmod{m}$

(ii) $a \pm c \equiv b \pm c \pmod{m}$ for any integer *c*.

Note: While solving congruent equations, we get infinitely many solutions compared to finite number of solutions in solving a polynomial equation in Algebra.

Introduction for Exercise 2.4

Concept corner

Sequences : A real valued sequence is a function defined on the set of natural numbers and taking real values.

Term : Each element in the sequence is called a term of the sequence.

Finite sequence:

If the number of elements in a sequence is finite then it is called a Finite sequence.

Infinite sequence:

If the number of elements in a sequence is infinite then it is called an Infinite sequence.

Sequence as a function:

A sequence can be considered as a function defined on the set of natural numbers *N*. In particular a sequence is a function $00f: N \rightarrow R$, where *R* is the set of all real numbers.

If the sequence is of the form a_1, a_2, a_3 , then we can associate the function to the sequence to the sequence a_1, a_2, a_3 ... by $f(k) = a_k$, k = 1,2,3, ...

Note: Though all the sequences are functions not all the functions are sequences.

Introduction for Exercise 2.5

Concept corner

Arithmetic progression: Let *a* and *d* be real numbers. Then the numbers of the form a, a + d,

a + 2d, a + 3d, a + 4d, ... is said to form Arithmetic progression denoted by A.P. The number 'a' is called the first term and 'd' is called the common difference.

(i) The General form	$a, a + d, a + 2d, a + 3d, \dots a + (n - 1)d.$	
(ii) <i>nth</i> term	$t_n = a + (n-1)d$	
(iii) Common difference	$d = t_2 - t_1 = t_3 - t_2 = t_4 - t_3 = \cdots$	
	$d = t_n - t_{n-1}$ for $n = 2,3,4,$	
	The common difference of an <i>A</i> . <i>P</i> can be positive, negative or zero	
(iv) Total number of terms	$n = \left(\frac{l-a}{d}\right) + 1$	

Note:

- The difference between any two consecutive terms of an *A*.*P*. is always constant. That constant value is called the common difference.
- If there are finite numbers of terms in an *A*. *P* then it is called Finite Arithmetic progression. If there are infinitely many terms in an A.P. then it is called Infinite Arithmetic progression.
- An Arithmetic progression having a common difference of zero is called a **constant arithmetic progression**
- In a finite *A*. *P* whose first term is *a* and last term *l*, then the number of terms in the *A*. *P* is given by l = a + (n 1)d gives $n = \left(\frac{l-a}{d}\right) + 1$

In an Arithmetic progression

- If every term is added or subtracted by a constant, then the resulting sequence is also an *A*. *P*.
- If every term is multiplied or divided by a non- zero number, then the resulting sequences is also an A.P.
- If the sum of three consecutive terms of an A.P is given, then they can be taken as a d, a and a + d. Here the common difference is d.
- If the sum of four consecutive terms of an *A*. *P* is given then, they can be taken as a 3d, a d, a + d and a + 3d. Here common difference is 2*d*.

Condition for three numbers to be in A. P.

Three non zero numbers a, b, c are in A.P if and only if 2b = a + c

Introduction for Exercise 2.6

Concept corner		
Series	The sum of the terms of a sequence is called series. Let $a_1, a_2, a_3,, a_n$ be the sequence of real numbers. Then the real number $a_1 + a_2 + a_3 + \cdots$ is defined as the series of real numbers.	
Finite series	If a series has finite number of terms then it is called a Finite series.	
Infinite series	If a series has infinite number of terms then it is called an infinite series.	
Arithmetic series	A series whose terms are in Arithmetic progression is called Arithmetic series.	
Sum of <i>n</i> terms of an <i>A</i> . <i>P</i> .		

The sum of first *n* terms of a Arithmetic progression denoted by S_n is given by,

$$S_n = a + (a + d) + (a + 2d) + \dots + a + (n - 1)d = \frac{n}{2}[2a + (n - 1)d]$$

• If the first term *a*, and the last term $l(n^{th} term)$ are given then, $S_n = \frac{n}{2}(a+l)$

Introduction for Exercise 2.7

Concept corner					
G	Geometric progression				
	Definition	A Geometric progression is a sequence in which each term is obtained by multiplying a fixed non-zero number to the preceding term except the first term. The fixed number is called common ratio. The common ratio is usually denoted by r .			
	General form	Let <i>a</i> and $r \neq 0$ be real numbers. <i>a</i> , <i>ar</i> , <i>ar</i> ² , <i>ar</i> ^{<i>n</i>-1} is called General form of <i>G</i> . <i>P</i> . <i>a</i> is called first term, <i>r</i> is called common ratio.			
	General term	$t_n = a r^{n-1}$			
☑ If we consider the ratio of successive terms of the <i>G</i> . <i>P</i> . then we have.					
$\frac{t_2}{t_1} = \frac{ar}{a} = r \; ; \; \frac{t_3}{t_2} = \frac{ar^2}{ar} = r \; ; \; \frac{t_4}{t_3} = \frac{ar^3}{ar^2} = r \; ; \\ \frac{t_5}{t_4} = \frac{ar^4}{ar^3} = r \; $ Thus the ratio between any two consecutive terms of the Geometric progression is always constant and that constant is the common ratio of the given progression.					

☑ When the product of three consecutive terms of a G.P. are given, we can take the three terms as $\frac{a}{r}$, *a*, *ar*.

☑ When the products of four consecutive terms are given for a *G*. *P*. then we can take the four terms as $\frac{a}{r^3}$, $\frac{a}{r}$, *ar*, *ar*³

☑ When each term of a Geometric progression is multiplied or divided by a non – zero constant then the resulting sequence is also a Geometric progression.

Condition for three numbers to be in G. P.

Three non – zero numbers a, b, c are in G. P. if and only if $b^2 = ac$

Total amount for compound interest is

$$A = P\left(1 + \frac{r}{100}\right)^n$$

Where, *A* is the amount, *P* is the principal, *r* is the rate of interest and *n* is the number of years.

Introduction for Exercise 2.8

Concept corner

Geometric Series: A series whose terms are in Geometric progression is called Geometric series. **Sum to n terms of a G.P:**

Sum to *n* terms of a G.P is $S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$

$r \neq 1, r > 1$	$S_n = a\left(\frac{r^{n}-1}{r-1}\right)$
r = 1	$S_n = a + a + a + \dots + a$
	$S_n = na$
<i>r</i> < 1	$S_n = a\left(\frac{1-r^n}{1-r}\right)$

The sum of infinite terms of a G.P is given by $a + ar + ar^2 + \dots = \frac{a}{1-r}$, -1 < r < 1

Introduction for Exercise 2.9

Concept corner

Special Series: There are some series whose sum can be expressed by explicit formulae. Such series are called special series.

Sum of first <i>n</i> natural numbers	$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$
Sum of first <i>n</i> odd natural numbers	$1 + 3 + 5 + \dots + (2n - 1) = \frac{n}{2} \times 2n = n^2$
Sum of squares of first <i>n</i> natural numbers	$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
Sum of cubes of first <i>n</i> natural numbers	$1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$

- Sum of divisors of one number excluding itself is the other. Such pair of numbers is called Amicable numbers or Friendly Numbers
- > The sum of first *n* natural numbers are also called **'Triangular Numbers'** because they form triangle shapes.
- The sum of squares of first *n* natural numbers are also called **Square Pyramidal Numbers** because they form pyramid shapes with square base.