2. Numbers and Sequences

Introduction for Exercise 2.1

Concept corner

Theorem 1 - Euclid's division Lemma : Let a and $b(a>b)$ be any two positive integers. Then, there exist unique integers q and r such that $a=b q+r, 0 \leq r<b$.
Note:
$>$ The remainder is always less than the divisor.
$>$ If $r=0$ then $a=b q$ so b divides a.
$>$ Conversly, if b divides a then $a=b q$
Generalised form of Euclid's division lemma:
If a and b are any two integers then there exist unique integers q and r such that $a=b q+r$, where $0 \leq r<|b|$
Theorem 2: If a and b are positive integers such that $a=b q+r$, then every common divisor of a and b is a common divisor of b and r and vice - versa.

Euclid's Division Algorithm :

To find Highest Common Factor of two positive integers a and b where $a>b$.
Step-1: Using Euclid's division lemma $a=b q+r ; 0 \leq r<b$ where q is the quotient , r is the remainder if $r=0$ then b is the Highest Common Factor of a and b.
Step-2: Otherwise applying Euclid's division lemma divide b by r to get $b=r q_{1}+r_{1}$, $0 \leq r_{1}<r$.
Step-3: If $r_{1}=0$ then r is the highest common factor of a and b.
Step-4: Otherwise using Euclid's division lemma repeat the process until we get the remainder zero. In that case, the corresponding divisor is the HCF of a and b.
Note:
$>$ The above algorithm will always produce remainder zero at some stage. Hence the algorithm should terminate.
$>$ Euclids division algorithm is a repeated application of division lemma until we get zero remainder.
$>$ Highest Common Factor (HCF) of two positive numbers is denoted by (a, b)
$>$ Highest Common Factor (HCF) is called as Greatest Common Divisor (GCD)
Theorem 3:If a, b are two positive integers with $a>b$ then GCD of $(a, b)=$ GCD of $(a-b, b)$.
Highest common factor of three numbers: Let a, b, c be the given positive integers
(i) Find HCF of a, b call it as $d, d=(a, b)$
(ii) Find HCF of d and c.

This will be the HCF of the three given numbers a, b, c.
Note: Two positive integers are said to be relatively prime or co prime if their highest common factor is 1

Introduction for Exercise 2.2

Concept corner

Fundamental Theorem of Arithmetic:

Every natural number except 1 can be factorized as a product of primes and this factorization is unique except for the order in which the prime factors are written.
In general, we conclude that given a composite number N, we decompose it uniquely in the form $N=p_{1}^{q_{1}} \times p_{2}^{q_{2}} \times p_{3}^{q_{3}} \times \ldots \times p_{n}^{q_{n}}$ Where $p_{1}, p_{2}, p_{3}, \ldots p_{n}$ are primes and $q_{1}, q_{2}, q_{3} \ldots q_{n}$ are natural numbers.

Significance of the Fundamental Theorem of Arithmetic:

$>$ If a prime number p divides $a b$ then either p divides a or p divides b. That is p divides at least one of them.
$>$ If a composite number n divides $a b$, then n neither divide a nor b.
For example, 6 divides 4×3 but 6 neither divide 4 nor 3 .

Introduction for Exercise 2.3

Concept corner

Modular Arithmetic: Modular Arithmetic is a system of arithmetic for integers where numbers wrap around a certain value.
Congruence Modulo: Two integers a and b are congruence modulo n if they differ by an integer multiple of n. That $b-a=k n$ for some integer k. This can also be written as $a \equiv b(\bmod n)$ Here, the number n is called modulus. In other words, $a \equiv b(\bmod n)$ means $a-b$ is divisible by $n . \quad$ [dividend $=$ remainder (mod divisor)] Example: $61 \equiv 5(\bmod 7)$ because $61-5=56$ is divisible by 7 .

Note:

$>$ When a positive integer is divided by n, then the possible remainder are $0,1,2,3, \ldots n-1$
$>$ Thus, when we work with modulo n, we replace all the numbers by their remainders upon division by n, given by $0,1,2,3, \ldots, n-1$.

Connecting Euclid's Division lemma and Modular Arithmetic.

Let m and n be integers, where m is positive. Then by Euclid's division lemma, we can write $n=m q+r$ were $0 \leq r<m$ and q is an integer,
$n=m q+r$
$n-r=m q$
$n-r \equiv 0(\bmod m)$
$n \equiv r(\bmod m)$

Thus the equation $n=m q+r$ through Euclid's Division lemma can also be written as $n \equiv r(\bmod m)$.
Note: Two integers a and b are congruent modulo m, written as $a \equiv b(\bmod m)$, if they leave the same remainder when divided by m.

Modulo operations:

Theorem $5: a, b, c$ and d are integers and m is a positive integer such that if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then \quad (i) $(a+c) \equiv(b+d)(\bmod m)$
(ii) $(a-c) \equiv(b-d)(\bmod m)$
(iii) $(a \times c) \equiv(b \times d)(\bmod m)$

Theorem 6: If $a \equiv b(\bmod m)$ then (i) $a c \equiv b c(\bmod m)$
(ii) $a \pm c \equiv b \pm c(\bmod m)$ for any integer c.

Note: While solving congruent equations, we get infinitely many solutions compared to finite number of solutions in solving a polynomial equation in Algebra.

Introduction for Exercise 2.4

Concept corner

Sequences: A real valued sequence is a function defined on the set of natural numbers and taking real values.

Term : Each element in the sequence is called a term of the sequence.

Finite sequence:

If the number of elements in a sequence is finite then it is called a Finite sequence.

Infinite sequence:

If the number of elements in a sequence is infinite then it is called an Infinite sequence.

Sequence as a function:

A sequence can be considered as a function defined on the set of natural numbers N. In particular a sequence is a function $00 f: N \rightarrow R$, where R is the set of all real numbers.

If the sequence is of the form $a_{1}, a_{2}, a_{3}, \ldots$. then we can associate the function to the sequence to the sequence $a_{1}, a_{2}, a_{3} \ldots$ by
 $f(k)=a_{k}, k=1,2,3, \ldots$
Note: Though all the sequences are functions not all the functions are sequences.

Introduction for Exercise 2.5

Concept corner

Arithmetic progression: Let a and d be real numbers. Then the numbers of the form $a, a+d$, $a+2 d, a+3 d, a+4 d, \ldots$ is said to form Arithmetic progression denoted by A.P. The number ' a ' is called the first term and ' d ' is called the common difference.

(i) The General form	$a, a+d, a+2 d, a+3 d, \ldots \quad a+(n-1) d$.
(ii) $n^{\text {th }}$ term	$t_{n}=a+(n-1) d$
(iii) Common difference	$d=t_{2}-t_{1}=t_{3}-t_{2}=t_{4}-t_{3}=\cdots$ $d=t_{n}-t_{n-1}$ for $n=2,3,4, \ldots$ The common difference of an $A . P$ can be positive, negative or zero
(iv) Total number of terms	$n=\left(\frac{l-a}{d}\right)+1$

Note:

10 The difference between any two consecutive terms of an $A . P$. is always constant. That constant value is called the common difference.
(1)] If there are finite numbers of terms in an $A . P$ then it is called Finite Arithmetic progression. If there are infinitely many terms in an A.P. then it is called Infinite Arithmetic progression.
[1] An Arithmetic progression having a common difference of zero is called a constant arithmetic progression

1 In a finite $A . P$ whose first term is a and last term l, then the number of terms in the $A . P$ is given by $l=a+(n-1) d$ gives $n=\left(\frac{l-a}{d}\right)+1$

In an Arithmetic progression
1 If If every term is added or subtracted by a constant, then the resulting sequence is also an A.P.
[1] If every term is multiplied or divided by a non- zero number, then the resulting sequences is also an A.P.
[1] If the sum of three consecutive terms of an A.P is given, then they can be taken as $a-d, a$ and $a+d$. Here the common difference is d.
$1 \mathbb{1}$ If the sum of four consecutive terms of an A.P is given then, they can be taken as $a-3 d, a-d, a+d$ and $a+3 d$. Here common difference is $2 d$.

Condition for three numbers to be in $\boldsymbol{A} . \boldsymbol{P}$.

Three non zero numbers a, b, c are in $A . P$ if and only if $2 b=a+c$

Introduction for Exercise 2.6

Concept corner

Series	The sum of the terms of a sequence is called series. Let $a_{1}, a_{2}, a_{3}, \ldots a_{n} \ldots$ be the sequence of real numbers. Then the real number $a_{1}+a_{2}+a_{3}+\cdots$ is defined as the series of real numbers.
Finite series	If a series has finite number of terms then it is called a Finite series.
Infinite series	If a series has infinite number of terms then it is called an infinite series.
Arithmetic series	A series whose terms are in Arithmetic progression is called Arithmetic series.

Sum of \boldsymbol{n} terms of an \boldsymbol{A}. \boldsymbol{P}.

- The sum of first n terms of a Arithmetic progression denoted by S_{n} is given by,

$$
S_{n}=a+(a+d)+(a+2 d)+\cdots+a+(n-1) d=\frac{n}{2}[2 a+(n-1) d]
$$

- If the first term a, and the last term $l\left(n^{\text {th }}\right.$ term $)$ are given then, $S_{n}=\frac{n}{2}(a+l)$

Introduction for Exercise 2.7

Concept corner

Geometric progression

Definition	A Geometric progression is a sequence in which each term is obtained by multiplying a fixed non-zero number to the preceding term except the first term. The fixed number is called common ratio. The common ratio is usually denoted by r.
General form	Let a and $r \neq 0$ be real numbers. $a, a r, a r^{2}, \ldots a r^{n-1}$ is called General form of $G . P . a$ is called first term, r is called common ratio.
General term	$t_{n}=a r^{n-1}$

∇ If we consider the ratio of successive terms of the G. P. then we have.

$$
\frac{t_{2}}{t_{1}}=\frac{a r}{a}=r ; \frac{t_{3}}{t_{2}}=\frac{a r^{2}}{a r}=r ; \frac{t_{4}}{t_{3}}=\frac{a r^{3}}{a r^{2}}=r ; \frac{t_{5}}{t_{4}}=\frac{a r^{4}}{a r^{3}}=r
$$

Thus the ratio between any two consecutive terms of the Geometric progression is always constant and that constant is the common ratio of the given progression.
\square When the product of three consecutive terms of a G.P. are given, we can take the three terms as $\frac{a}{r}, a, a r$.
\square When the products of four consecutive terms are given for a G.P. then we can take the four terms as $\frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}$

When each term of a Geometric progression is multiplied or divided by a non - zero constant then the resulting sequence is also a Geometric progression.
Condition for three numbers to be in G.P.
Three non - zero numbers a, b, c are in G.P. if and only if $b^{2}=a c$
Total amount for compound interest is

$$
A=P\left(1+\frac{r}{100}\right)^{n}
$$

Where, A is the amount, P is the principal, r is the rate of interest and n is the number of years.

Introduction for Exercise 2.8

Concept corner

Geometric Series: A series whose terms are in Geometric progression is called Geometric series. Sum to n terms of a G.P:
Sum to n terms of a G.P is $S_{n}=a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}$

$r \neq 1, r>1$	$S_{n}=a\left(\frac{r^{n}-1}{r-1}\right)$
$r=1$	$S_{n}=a+a+a+\cdots+a$
$S_{n}=n a$	
$r<1$	$S_{n}=a\left(\frac{1-r^{n}}{1-r}\right)$

The sum of infinite terms of a G.P is given by $a+a r+a r^{2}+\cdots=\frac{a}{1-r},-1<r<1$

Introduction for Exercise 2.9

Concept corner

Special Series: There are some series whose sum can be expressed by explicit formulae. Such series are called special series.

Sum of first n natural numbers	$1+2+3+\cdots+n=\frac{n(n+1)}{2}$
Sum of first n odd natural numbers	$1+3+5+\cdots+(2 n-1)=\frac{n}{2} \times 2 n=n^{2}$
Sum of squares of first n natural numbers	$1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
Sum of cubes of first n natural numbers	$1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

$>$ Sum of divisors of one number excluding itself is the other. Such pair of numbers is called Amicable numbers or Friendly Numbers
$>$ The sum of first n natural numbers are also called 'Triangular Numbers' because they form triangle shapes.
$>$ The sum of squares of first n natural numbers are also called Square Pyramidal Numbers because they form pyramid shapes with square base.

